Yolo universal target detection model combined with EfficientNet-lite
Yolo universal target detection model combined with EfficientNet-lite, the calculation amount is only 230Mflops(0.23Bflops), and the model size is 1.3MB
I used CUDA 10.2,cudnn 7.6.5,GPU NVIDIA GeForce RTX 2060
I have set up in Makefile
GPU=1
CUDNN=1
ifeq ($(GPU), 1)
COMMON+= -DGPU -I/usr/local/cuda-10.2/include/
CFLAGS+= -DGPU
LDFLAGS+= -L/usr/local/cuda-10.2/lib64 -lcuda -lcudart -lcublas -lcurand
hello master,
i use your Yolo-fastest to tflite
and i want use it
so i need use it NET like this:
https://github.com/hunglc007/tensorflow-yolov4-tflite/blob/9f16748aa3f45ff240608da4bd9b1216a29127f5/core/yolov4.py#L146
when i type the command as g++ -fPIC -std=c++11 -D_GLIBCXX_USE_CXX11_ABI=0 yolo_console_dll.cpp -L./lib/ -I. -ldarknet $(pkg-config --cflags --libs opencv) -o test.
The error is /tmp/ccis7rE8.o:in function‘main’: yolo_console_dll.cpp:(.text+0xb11):‘Detector::Detector(std::string, std::string, int)’undefined reference collect2: error: ld returned 1 exit status
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.